

Dana Stoll
IT-Management Professional & Coach

Contents

1 Introduction ... 2

1.1 What´s this (Fr)agility all about? ... 2

1.2 What´s the (fr)agile perspective on management? .. 7

1.3 How does (Fr)agility organize IT processes? ... 10

1.4 The Consequences of Complexity on Organizational Contingency 14

1.5 The Consequences of the Cynefin model on Service Management 17

1.6 A collection of common sense truths which usually are not so common 21

2 The Prime Directive ... 27

3 Making (fr)agility work .. 28

3.1 Making the Service Owner work ... 28

3.2 Making the Coach work ... 30

3.3 Making the Team work .. 34

The Lengthy Introduction to
Fr(agile) Service Management

3.4 Making Strategy work ... 36

3.5 Making Tactics work .. 41

3.6 Making Ops Work .. 44

4 Fixing Things .. 49

4.1 Fix Repositories ... 49

4.2 Fix Administrative Interfaces ... 53

4.3 Fix Documentation .. 54

4.4 Fix Service Advisory Boards ... 59

4.5 Fix Service Level Agreements .. 61

No! This stinks! .. 64

They thought it was cool .. 66

1 Introduction

1.1 What´s this (Fr)agility all about?

(Fr)agility is ...

… simple, natural and state of the art form of

managing IT

… combining agile management methods with

traditional IT Service Management (e.g. Scrum

with ITIL)

… enabling IT Service Management for volatile

markets

… focusing on both: results, people and work

… built upon ethics and a working environment

worth participating in… valuing both strategies for

their respective benefits.

… the way I work and want to work

… not for sale.

Simple?

(Fr)agility gives you an easy to use guideline through the current difficulties

when doing IT Service Management in modern market environments. Like

connecting with rapid application development. It doesn’t keep you busy with a

mess of process chains and organization diagrams. It relies on simple principles,

which have proven to be very effective. Therefore, they are independent from

tools or actual implementations. Whoever does things the (fr)agile way, can

profit from enabling his own mind to get things straight.

Natural?

(Fr)agility focusses an a view of people and companies as human beings and

their natural actions within their environment. (Fr)agility is “green” IT

Management :-) So (fr)agility translates complicated terms of IT Service

Management into actions which feel like natural behavior to us when we carry

them out. Instead of following complicated procedures. We firmly believe that

focussing on what people naturally do best and providing decent “defaults” is key

to sustainable results.

Traditional?

(Fr)agility doesn’t forget about best practice methods

which have evolved over the last decades. Instead,

(fr)agility presents the important principles of IT

Service Management in a modern light, adapting them

our volatile markets, which gives you maximum

flexibility and allows you to make your own decisions

based on your very own situation and experience. The

principles and culture which (fr)agility promotes are

based on values and beliefs which we deem worth supporting to create a humane

environment in a world full of technology. Not following every hype just for the

sake of it.

We? Us? I?

(Fr)agility basically means “I”, and the term has

become my trademark. If I’m refering to “I”, then I

usually mean myself. I do this because I don’t like

myself referred to as a method or school of thought.

If I’m referring to “we”, I’m not cultivating

schizophrenia between (fr)agility and I, but am

paying tribute to the small group of (to me) very

special people who helped in getting the bits and pieces together to comprehend

this. Most of the bunch are IT, coaching or leadership people. We’re some sort of

virtual family. Somtimes “we” or “us” will also refer to you and I. You’ll have to

decide.

Why do you need to put a label on this?

I wouldn’t want to see my first name on everything I do. I also couldn’t stand

becoming a trend. (Fr)agility deserves a name of its own. Maybe I want to do

something else, some when, in the far future.

But this is also not another Agile framework. What’s written here is neither

ultimate truth nor the only way to do things. I try to find vital points in fixing

Agility and IT Service Management together, illustrate what’s important and open

perspectives how to do it. There are tons of ways to do it successfully. A lot has

already been said by Agile methods. Repeating and sticking a different label on it

would be a waste. If it works for you, use it. (Fr)agility is nothing more than the

way I work. If you think this is “small scale ITIL”, okay. If you think this is

“Scrum for IT” or “XtremIT”, I can live with it. If you think it is “Crystal Clear Red

White Server”, go for it. (Fr)agility is just a label. It means to fix agile and fragile

environments together. That implies making some minor tweaks to Service

Management in the early stages of live operations.

Sure, but what qualified particularly you to do this?

It happened as a result of my work experience. During my last 15 years as a

graduated computer scientist I have been working in software engineering,

running many IT services from game servers to DAX 100 companies, built and

headed the IT department ofWEB .DE, at the time the biggest German portal site,

for eight years and throughout our major new market crisis, taking additional

lectures on management, psychology (and for some strange reason quantum

physics), giving lectures on IT service management and ITIL at three

universities, even working in controlling, coaching and closely working with some

of the most well-known Scrum trainers and IT pros in Germany, even drafted a

Scrum certification class for one of them, dug myself into organization theory for

doctoral studies (which I somehow never got the time to finish), and been

consulting in business informatics for a major German telco company, which I

now work for.

To put it short: I encountered these pieces during

the tremendous amount of information and work I

ate. I don’t expect many people to have the exact

same schedule. At least in central Europe there is a

chance that I know most of them who are just as

crazy. Also I usually fix the pieces I find together. At

some point I have created (fr)agility, simply to have

a label to refer to and collect all this. Besides, the name still sums it up very well.

So, from a top level perspective, what’s going wrong?

During the last two decades, professional

frameworks concentrated on two factors:

maintaining quality (or customer satisfaction at

most) and avoiding fraud. Both of these approaches

from my experience do not seem to work on a large

scale.

Maintaing quality and customer satisfaction has created many quality assurance

frameworks, process frameworks, certifications, review processes, assessments

and the like. However, they leave you behind with many unresolved issues:

 They work better for cash cow environments where everything is ready

defined so best practice can be used upon. However there is a huge gap

for all product situations which didn’t reach that stage yet.

 Innovation always takes place in non-cash-cow environments.

 Reviewing the block busters of online applications during the last five

years one can find many examples, where quality was outperformed by

time to market. Apparently modern customers are willing to take some

slack in terms of quality, if they are able to interact with companies even

during the development stages, or simply save money.

 The frameworks have grown huge, they overlap, but just not quite. Thus

they bind a lot of effort and brainwork within the same organization, which

slows things down, plus requires a lot of people, which you don’t always

have. So they may become innovation killers.

 Todays markets are fast paced. There has been a shift away from

traditional cash cows towards shorter product cycles and market

exploitation. Therefore we once more need to reconsider “best practice”.

 They abstract business from those who have to conduct it.

How about corporate governance?

Avoiding fraud and laws for enhancing transparency

on the other hand seem to have created a vast

documentation pile, which is almost as outrageous

as the quality framework specifications are

comprehensive. Sarbanes Oxley (KonTraG

respectively), Basel II all had one consequence: the

signed pile of paper which states that things have

to be as it has been stated has been reaching new

heights. And at the same time the mutually dependent lobby grew, who after

signature had to assert truth to the signed paper instead of reality. As we now

know, none of them helped to prevent our major financial crises.

Each new framework or layer of abstraction you place upon an organization

contains new Chinese whispers about how people at the base really conduct their

business. They usually state how things should be, rather than how they really

are. Since important people and companies have to testify that things are how

they should be, the papers will state just that, because everything else would

mean immediate trouble. If they are not quite how the paper says they should

be, then there perhaps may be some trouble at some point in the future.

Immediate trouble always wins. And once there is a signature, the lobby of

defendants for this version of reality is big. Since this applies to all levels of

business right up to the top, the consequences will most likely be “relative”,

otherwise the “system” would have to jail itself.

And what has all this to do with delivering working IT service

processes?

Nothing. People who have to keep stuff up and

running take zero orientation for their daily work

from all of this. And exactly this is the biggest

problem.

Don’t tell me agile methods are all good!

No, they aren’t. For the most part of it, could even

have done better: Leave their own universe, stop

pointing towards the “traditionals” and putting the

blame on them. Instead of helping to dissect all the mess, engaging in mutual

communcation at the same level and thus opening ways for effective

collaboration. Which sometimes is difficult, if you have to meet deadlines, I have

to admit.

What we need is a proper synthesis of the both, dependent on the portfolio of

product situations an organization needs to master, and apply the right tool to

the right services. This means bringing agility to IT Service Management, as well

as Service Management to Research and Development. And an environment of

mutual responsiblity, where people can grow from orientation and thus enjoy

contributing, to both.

1.2 What´s the (fr)agile perspective on management?

(Fr)agile management is ...

… about people.

Isn’t this approach a little bit obvious?

It obviously isn’t. Karl Weick, a renowned organization

expert, already in the seventies wrote, that organization

itself does not exist. If you start looking for organization,

you end up finding nothing but people and their

interactions. This hasn’t changed. However, if you look at

current management literature, you find nothing but roles,

rules, processes and optimising, and little about people.

This only describes what could be done, not what helps people be successful, and

not at all what people will actually do.

Even the boundaries of an organization, which we always draw on our white

boards as some sort of circle, are visionary. It is the people who act with outside

organizations and the environment. In some places, there indeed are automated

processes, which assist people with their interactions. There is little operation

which is completely automated, and most of it consists of energy or production

supplies.

Yes. But processes describe what people should do and give

orientation.

From what I have seen, they do not. They are often

documented afterward, and seldom used as a

guideline for work. I’ve seen many of those process

graveyards. If two human beings interact, something

way more complex happens than what can be

described in process documents. These additional

factors have at least as much influence on every

single decision and action of human beings as rules

and role descriptions.

Process descriptions, social microsystems between people and all other

influencing factors (health, family, likes, dislikes, skills, etc.) create conflicts.

These conflicts have to be resolved by us working individuals. Adhering to

processes is just one piece within the conflict resolution process. Besides, there

is a big motivational issue. Many people like to help other people by far more

than they are motivated to abide by abstract rules. They cannot do otherwise,

because it is a reflex. This is a powerful human trait which can lead to enormous

achievements. In terms of procedure you may just call it poor performance.

This isn’t really professional behavior, is it?

This is human behavior. If two people interact, they

do not behave like Turing Machines, as process

charts may illude us. Their behavior is complex.

They, more or less, “entangle”. This means, there is

a chance that they will feel sympathy and start to

like each other. This makes communication a lot

easier and gives way to new possibilities. In fact, all

human life is based on this principle. But it also

creates new diversion and places importance on

traits like matching ethics, likes and dislikes. If two

sympathizers negotiate on a certain subject, there is good chance that they will

find some agreement or at least decent compromise, and — for a certain time —

will live up to this agreement. Until they become more involved with other

“entanglements”. During their working routine, these two people will most likely

pass the ball on in mutual responsibility, regardless of any process requirements

or prohibitions.

Yes, but …

Yes, but. There is also a chance, that the two will not

feel any sympathy for each other, their ideas, views

or beliefs. This makes conversation difficult, if it’s

being taken too seriously. And ironically it makes

interaction, which we usually call professional, a little

easier. If the two converse on a certain subject, it is

highly likely that they will not focus on their mutual

understanding. But instead of results they may just

as well focus on the differences which still remain

(and will always remain).

There is never an end to the subtleties of differences in points of view. The

phrases which are most commonly heard in such situations start with “Yes, but

…”. My personal favourite is the completely hypothetical “Yes, but if …”, which

has no practical relevance whatsoever, but merely constructs illusionist scenarios

which might some day at a given time have a tiny chance of creating a problem.

People in this state are likely to throw tasks like bullets at each other with an air

of “not my job”-attitude. Perfectly justifiable by situational interpretation of their

respective role descriptions.

So we behave a bit like quantum systems. There is a certain probability that we

will act according to what role descriptions prescribe. But the organization or

management itself cannot measure, what this probability really depends on. It

remains hidden in our brains, or the mutual brains of our teams, families or any

other level of coexistence.

Yes. But therefore we measure compliance, performance and goal

indicators, and create incentives

Frankly, this is an illusion. We know that human

interaction in organization

creates emergent properties. This means new

possibilities arise, which are beyond the sum of all

our parts. However, on an individual level, we are

not capable of measuring them, because they only

exist at larger scale.

Even more: If we measure people at an individual

level for their performance in away so they are

aware of the measurement, we actively ruin organization and its results. I’ve

never seen measurement of poor personal performance take place in

organizations which did not directly lead to prohibitive interaction. This always

results in poor team interaction, and on a large scale this leads to poor team

results. At least poorer as they could be.

Imagine for a minute a team in the following state: One member is, for whatever

reason, performing bad. The others, aware of this, decide to make a difference,

and by any means do not copy his poor performance. This has a good chance to

boost overall performance. If you take the low performer out of the team, the

result may just be the opposite of what you expect. There may of course also be

a chance, that chit chat about the team member’s bad working attitude will

distract people more than it’s worth. You simply cannot tell from measuring on

an individual level. You will have to interact more intelligently if you want to call

it “management”.

Incentives based on personal performance

monitoring are even more harmful. In this case, for

our own benefit, we entangle with the measurement

more than what common sense would allow for in

certain decision situations. You can blame many

ludicrous situations in organizations on this. Even

with the measurement systems themselves. I’ve

personally encountered the following situation not

only once: “Why can’t we just correct this number to

reflect the proper amount?” “I don’t know. Probably

somebody’s bonus incentive depends on it.”

So what do you propose?

Radically speaking: never measure on an

individual level and never try to directly

influence people’s actions.

Instead, at each level of organization (teams, departments, groups, …) provide

as much orientation and guideline which is necessary, so people can align their

many interactions in order to achieve their mutual targets, as a team. Only

people can decide: what they can do best, when they can do it, how they can do

it, and when not.

Every team is capable of negotiating this on a daily

basis without any or at least with little loss. But the

benefit is huge. However only measurable in terms

of team performance. If you insist on measurement,

do it passively, on team level, and always as a

means to improve your own performance, not

others. Refrain from drawing quick conclusions on

individual performance. Always place developing people’s abilities, skills and

welfare in life above squeezing for individual results. Create a working

environment, which on global scale encourages such behavior.

In other words: If you want great achievements, treat people like intelligent,

creative human beings, not like exchangeable role and duty fulfillers. Otherwise,

you will never get more than the sum of their parts, and in this case, your

organization’s only justification of existence left is some shared resource among

the people.

1.3 How does (Fr)agility organize IT processes?

(Fr)agility organizes IT processes ...

… not.

(Fr)agility ist not yet another process framework for

IT Service Management. Pretty much all what can be

said on the architecture of IT Service Processes has

been written down in readily available literature. You

probably know most of it already.

Of what use is (fr)agility then at all?

(Fr)agility is not for use. It only tries you hint you

through these huge collections of can-doables. It

shows you how to resolve modern conflicts in IT

Service Management, and where to place your

secret portals for shortcuts to immediate success …

Not. It tries to sharpen your view, so you can tell

for yourself which patches of these frameworks and

management frameworks may be appropriate for

your particular IT Service Management situation. If

this isn’t enough, (fr)agility finds people who can

help you get started, but only that. We won’t do the job for you. Doing this,

(fr)agility focuses on innovative, fast paced product situations, or at least a

combination of these with traditional Service Management environments.

Therefore the most prominent piece is some sort of interface between agile

development methods like Scrum or XP and strategies of traditional IT Service

Management as ITIL is. This is a fairly modern market requirement for which we

found many question marks in people’s minds out there, and little dedicated

literature to start out with. Because only “yet another piece of engineering

diagram” will not do this job.

Don’t the frameworks already do this? The deal with sizing.

As a rule of thumb, the cake is a lie. Many frameworks nowadays end with

certifications. And as part of the certification

process, you also subscribe to the framework’s code

of work ethics. Sometimes they require you to do

this even explicitly. I’ve even encountered

contradictory codes of conducts for different

certifications, which was the reason, that although

studying the syllabus for quite some, I finally left out

on many. Lecturing at universities I cannot afford to

subscribe to one particular code of conduct and

credibly retain an independent approach. I’ve never

seen a certificate doing any hardware, software or

people work anyway.

The global trends point toward separation, not

integration. This happens, because a theory today is

not only one alternative way of thinking about

things, but it is a complete school of thought,

certification office, brand, market power, philosophy,

social body, method of structuring your daily work

routine and general code of conduct at the same time. Since parts of this force

have been licensed to other organizations, defending them becomes mutual

obligation. Thus we need something a little bit more open than yet another open

framework, even if this means leaving the well known path of engineering-like

diagrams, which our educational systems dictate us to prefer.

Things become even more difficult, if those

frameworks are based on organizations which have

been financed on borrowed funds. Investors want to

see results, and usually define results in little else

than terms of profit. It makes no difference whether

this influence comes from financial influence on

private companies, political lobbyism or academic

sellout.

Well, as coming from the same society,

aren’t you biased as well?

Of course I am and I hope I am. This is how the human brain works. I would

have to fear myself if I weren’t. So I have to deal with it. I possess no “ultimate

truth” or knowledge for the better. Besides, you’re free to go and do things as

you see fit, at any time.

(Fr)agility merely deals with different aspects of our professional life and

hopefully does it as well as others do their job in their part of the game. If it

works, it sometimes makes you think, and then you start to see and do things

different.

So what does (fr)agility consider to be the basic principles to have

in mind for agility IT Service Management?

There are, in fact, two of them:

A

The Consequences

of Complexity on

Organizational

Contingency

B

The Consequences

of the Cynefin

model on Service

Management

C

A collection of

common sense

truths which

usually are not so

common

http://aliando.com/AliandoItProcesses/46/the-consequences-of-complexity-on-organisational-contingency
http://aliando.com/AliandoItProcesses/45/the-consequences-of-the-cynefin-model-on-service-management
http://aliando.com/AliandoItProcesses/47/a-collection-of-common-sense-truths-which-usually-are-not-so-common

1.4 The Consequences of Complexity on

Organizational Contingency

What on earth is this Contingency thing?

The possibility, that you can deliberately do things.

For example a rock. A rock has very little

contingency. A dog has a little more contingency.

However in resisting its instinct to run after a thrown

stick and bring it back, it might badly fail. Humans

on the other hand have even more contingency,

most of the time, at least.

This does not overcome laziness. It just means they

are deliberate in their actions, if the necessity should

arise, that they act. This does also apply to organizations.

So what can we do with it?

Everything. Unless complexity hinders us.

I thought Complexity enables us to do things?

Yes, up to a certain point. In this bubble graph an

organization is simply depicted as a bubble. “Our”

organization and everything which belongs to it is

painted in red. Environment gets black. Each circle

means there is “one”. One means “existence”. Thus,

if we have one organization, there is one big, red

bubble.

If this bubble is empty, it does not have any members. Each member is shown

as bubble within this bubble. The concept is recursive. There can of course be

more than one member within an organization. Since organizations can also be

members let’s just call this whole stuff entities. Finally, relationships between

entities are drawn as connecting lines.

This is standard informatics. Get to the point …

At an initial stage, every organization is built of

simple structure. It starts scanning its environment

for meaningful candidates for interaction. Because of

the organizations low complexity, few members have

to deal with a lot of things on the outside. If our

internal structure is simpler than our surroundings,

we perceive an abstract image, just like our eye does. So we recognize patterns,

which is intelligent.

As our organizational brain develops, structure gradually refines and may

interface with environment at higher level. For example whole departments can

communicate with departments of foreign companies. Thus increasing complexity

step by step enhances our freedom to respond deliberately to our environment.

This is nothing new. Again, so why is Complexity a bad thing?

The more complex we get, we need to develop

superstructures, which observe ourselves and keep

things organized within. Otherwise we would fall

apart into our pieces. Or cultivate schizophrenia. So

everything within our organization is interwoven in

one big mesh.

Processes urge members of our organization into

roles and rules, as well as prescribe their interconnections. Or better: all

members of an organization will entangle (we had this before), if they interact

with others. This is the Dynamic Structure of an organization. Dynamic, because

entanglements never last eternally. A line then symbolizes this interaction, as

long as the entanglement is still active. Practically, there is little difference

between processes and entanglement except when looking for somebody to take

the blame.

Now get to the point!

Contingency starts to drop rapidly, the more

lines we draw between the members within our

organization. If entanglements change, the

Dynamic Structure of an organization changes. If

there are more and more entanglements,

decisions and actions of our organization become

less deterministic.

The more interconnections we get, the more self-defined and less contingent our

organization becomes. We can no longer move. The Dynamic Structure has

become rather static. I have even seen companies end up in a state, where

building structure seemed to be the main purpose of their further existence,

seemingly having lost connection to the outside world. It happens, because

decisions and actions are always a result of the existing Dynamic Structure of an

organization.No matter how many people speak the same warning, the

organization simply cannot hear them, or do nothing about it.

And if we then change the environment?

They will get wet. For it may take days to find out

who is entitled to open an umbrella. Let alone who

needs to draft new forms for it beforehand. After all,

umbrellas do create desires if it rains, so they have

to be given out sparsely.

If their market conditions change, there will

probably be big trouble. And cake for their

competitors.

Again, what does this have to do with IT processes?

Introducing IT Service Management Frameworks has multiple effects on the

dynamic structure of an organization:

 New elements increase the complexity, but also

give way to new behavior.

 Abstract roles may summarize existing entities,

thus decrease complexity, but also vice versa.

 New processes can do both: increase and

decrease the number of durable interactions.

Changes to IT Service Management always manipulate the Dynamic Structure of

an organization. It depends on your very special situation whether the impact will

do you any good.

If your structure is already tied up, and you still add new structure to it, you end

up in big trouble. But at least, well structured trouble.

So what would you do?

Whatever you do, always reduce complexity to a

point where you can do what is required just fine.

That’s the simplest solution. The shortest way to

express things. The best order. That’s enough

structure you need. You don’t need to outperform

yourself, even if it feels good. This keeps you from

overstructuring. Overstructuring makes things

complicated, lengthy and less ordered.

When introducing IT Service Management components, pick and adapt. Estimate

the impact of whatever you introduce to your organization in terms of changes to

its Complexity and Contingency. From my experience, this is your best guide at

making the right choice.

With every role, rule or process ask yourself whether it adds or decreases

complexity, and whether it simplifies, enables, mobilizes or paralyses things.

Pick whatever suits your unique situation. Don’t forget to consider your

environment.

Sure. What is my unique situation?

Have you heard about the Cynefin model?

1.5 The Consequences of the Cynefin model on

Service Management

You probably know the Cynefin model by now,

for it has been around since 2007. Cynefin is a

Welsh word and stands for the present or

space, which we are living in, taking into

account that it results from the interwoven

pathways which led us there in our past. What

we did has never been wrong. It simply

brought us to where we are right now.

The Cynefin model has been invented by Dave

Snowden, a Welsh lecturer, consultant and researcher, as a modification of

Boisot’s I-Space. The model divides organizational environments into four

categories: Chaotic, Complex, Complicated and Simple. The axes typically do not

need to be specified, but you could substitute a decreasing velocity of

environmental change times knowledge about the composition thereof on x-axis,

and an increasing level of perceived environmental complexity on y.

But this doesn’t hold completely, so it’s a lot better to use more high quality

images to illustrate these stages:

Chaotic

If we start out with anything new, we know

very little about it. This is symbolized by our

red organization bubble, which shows little

internal structure. At the same time, our

environment seems to be in a chaotic shape.

We cannot recognize any of its structures,

there just seems to be a vast number of objects we cannot assign any meaning

to, or discern good from bad. Furthermore what we observe seems to be rapidly

changing. Since there is little internal routine and structure to be kept up, we can

react pretty fast, and nobody blames us if our first attempts to see the light may

seem nothing like funny grimaces to other people.

This applies to almost any new product situation:

 we know nothing about customer acceptance

 we know nothing about trends

 we have little experience from mistakes we already made

 we observe rapid changes in our environment because we can not

grasp orientation from its higher level structure

It just all looks like asteroids to us. Everything we do here is novel practice.

Without any known places to anchor, we must simply act first, then sense what’s

happening, and try to act accordingly.

This is usually the stage when traditional IT is requesting a one year

development plan from product management for any new product to come to be

able to prepare accordingly.

Complex

As our market experience is becoming more

mature, we can build up corresponding

internal structures, which reflect many of the

things from our environment. Not as a whole,

but as some sort of abstract pattern. We

know how to lift our legs, maybe even stand

for a couple of seconds, but we will still have

to learn how to even walk. Enough to work

with, anyway.

Given our new freedom we realize that there is much more behind things in our

surroundings than we were initially able to comprehend, and that everything

seems to have its unique features. There seem to be no exact sames and we are

almost getting lost in its variety.

At this stage usually a couple of expensive commercial off the shelf vendors

come to your door and promise you they have seen, grasped and defeated all the

beasts of this rough world, and offer you a software solution which will make it

all easy for you to catapult you straight to market leadership. At the same time

they also promise you to have the ideal software solution to administer your

internal structures. At least the latter of the two may make you think.

Additionally, your experience may double, if your boss arrives at your office,

presenting new targets and recommends you to “grow really fast”.

Bear with me. Only two to go.

Complicated

Things are getting better, when we realize,

that many things look the same, behave the

same, and we can therefore seperate them

from other things in categories. Things are

then getting complicated, when we notice that

some of them, which basically look the same

to us, at a closer look do not quite seem to be

as similar as we initially thought.

Anyhow. From the moment we can draw conclusions from higher level

categories, we can apply different standards when handling the external objects,

which makes life for us a lot easier. After a couple of rounds of corrections and

adjustments we can then apply what is considered good practice.

At this point, many talented, gifted, creative people stop working with you,

because the job doesn’t have too much to do with creativity anymore, rather

than categorizing, administrating, structuring and doing the same things over

and over again. Which for some people for no obvious reason and against all

better knowledge really identifies with ultimate boredom.

You will have to work through serious struggles

between those people who need to keep up the rapid

trial and error development of new features of your

product to investigate their market acceptance and

exploit their share, versus those who are responsible

for operating your customer platform. They are

separated by “The Threshold”. Typical groups of

people who sometimes hardly understand each other

are:

 product managers and programmers

 programmers and administrators

 administrators and product managers

 art directors and CEOs with all of the above

But only if they are operating on different sides of The Threshold.

This is also where quality considerations kick in and you should seriously

reconsider whether the way you were doing things really was as cool and funky

as you initially thought it would be.

Simple

Things become simple, when you’re pretty

well organized, have developed a higher level

of intelligence, implemented a decent routine,

trained yourself in perfect shape and possess

a voluptuous body of resources. Despite the

fact that to your knowledge things are way

more complicated than you will ever be able

to comprehend you will find your way. Simply

by deliberately chosing the level of

abstraction you prefer.

If you’re lucky and there are enough other people who look at the world from

this particular perspective, there is meta-experience which can be shared and

distributed, so everybody can profit from it. This is calledbest practice. As there

have been many many observations, what works for others will of course

decently work for you. **)

**) Best practice will only work if your product experience reached this particular development stage. Best practice

comes W I T H O U T A N Y W A R R A N T Y . Standard disclaimers apply. There is no guarantee that any of this will ever work for you, but

recent, industry wide, independent studies have shown best practice methods to perform above average. We

can N O T BE H E L D R E S P O N S I B L E if any of this will not work for you. Please do N O T contact us for any problems with any framework

we published.

So what has all this to do with IT Service Management?

The frameworks which have been made for IT Service Management, Quality

Management or even Corporate Governance are best practice frameworks.

According to the model, best practice is only fit for purpose

in Simple organizational environment situations.

To my experience, there is a huge chance, that:

 you will try to implement best practice frameworks in premature

organizational stages just to do it like the big guys

 you will try to apply best practice to non-ready product stages just

because “best practice” is “best”

 you will deliberately ignore if somebody tells you you shouldn’t consume

what the grown-ups do

Don’t become childish, we know our business

Perfect. This is the key to do proper IT Service Management. Being able to

realistically judge the maturity of your organization in terms of product, market,

production and information technology environment dynamics.

All you need is to do an inventory of your organization. Then implement Agile IT

Service Management methods for Chaotic and Complex product(ion) situations

(the left side of The Threshold), best practice frameworks on the right. Gradually

blend the two into each other from Chaotic to Simple to avoid organizational and

cultural strain.

You’re all set. There’s nothing more I can tell you now. Please go away.

1.6 A collection of common sense truths which usually are

not so common

(The Agility Self-Test)

Growth hurts

Acquiring any new skill is connected to collecting

bruises. I don't know why people, who act in

business situations, can no longer imagine

stumbling and falling on the floor.

Is it because:

 they consider them as grown ups who should not collect any bruises

anymore?

 they are operating with foreign money, and thus just want to be

careful?

 they think the most profound competitor is the one who collected the

least bruises?

 falling provides them with a feeling of inferiority?

 not falling has been symbolized as success?

Stress kills productivity

If our body anwers to stress, it puts all energy to

the muscles, reduces thinking to a minimum and

prepares to runaway.

Did you ever encounter:

 a situation where you lost the thread just

because a sudden fear of losing it seemed to shut

your brain down?

 entrepreneurs talking to employees in a way

so they react similar to the above statement?

 a project leader exerting more pressure the closer people were

desperately bustling towards deadlines?

 superiors deliberately straining their people just to give them less time

to think?

 people with burnouts resulting from internal competition?

 your boss rant about furiously just when you're trying to fix this major

crash and get servers back up?

Results arise from not being available

This one may be a little bit tougher. I'll be more

figurative. Imagine the following situations, and

draw your own conclusions. Which of the

following statements do you think is

appropriate:

 When calling your child at a date, this will

contribute, because you have a ton more

experience with dates and need to make sure

there will be results.

 If you know your significant other will repeatedly walk in, push

through the rows, ask you a couple of questions and leave, this is the best

prerequisite for really enjoying a movie at a theater with your friends.

 Your instructor calling you while performing on stage at a local concert

hall will ensure a great performance.

 Practicing math is best done at a local coffee shop. The audience

keeps your focus on avoiding mistakes.

 You consider it a decent strategy to place people in open offices and

then discipline them to by all means be quiet.

 Your boss not being available is usually the reason why you cannot get

anything done.

 You manage servers best while being observed by at least two people.

 You never offered somebody to be available just to distract from not

being able to deliver.

Lazy ways of doing things are superior

Now, what would you say:

 Cooking dinner is superior to ordering dinner

if all you have to do is getting your stomache

filled.

 Placing toilet rooms behind the house

provides better hygiene.

 Visiting the local radio station provides better

information than lying in your bed and listening

to their newscast.

 Working at an open office desk provides better results than laptopping

on your couch.

 People walking about checking their watch will reach their destination

earlier than people who are sitting lazily in the train, gazing out the

window.

 From watching people sit in front of computer screens, you can judge

what they are just busy with.

 You never clad yourself in an air of bustling activity to relieve the fact

that you were behind schedule.

 You never inserted blank lines, increased font size or added

complicated graphs just to make the same result look like more effort.

 You think the figure in this illustration is just a lazy bum who doesn't

get any work done.

If something breaks, throw it away

This is the one, big exception to the above rule.

Would you say, that:

 If your TV set breaks, it is intelligent to go

buy the old model, just because the new one

comes with new features and has a completely

revamped remote control?

 Driving your overhauled, old car will bring you more safely to a

destination than a new one, just because you are used to it?

 If one of your servers fail big time, it is superior to reinstall the old

version from backup than importing the database to a readily available,

newer version?

 Your administrators are less capable of getting the new version to

work than fixing the old?

Ok, next ...

Meaningful things may be simple

Compare the following two pictures. Which one ...

... conveys more information about my

work attitude?

... gives you a better impression of my

superb drawing skills?

... required more work to be finished?

... would you call more professional?

Did you ever spend 3 hours on a slide for something which could have

been drawn in five minutes on some piece of paper, just to look more

professional?

Personal chaos is more productive than central organization

Would you say ...

... people keep their files in disorder just

because they are too lazy to structure them

properly.

... people do things in weird ways just

because they don't know how to do it right.

... people keep their desks or desktops in

disorder just because they have no work discipline.

Do you ...

... put your files where you best see fit?

... do things how you think is best and learn from experience?

... give a dang about your desk when there really are more important

tasks to do?

Would you think ...

... telling teams how to organize themselves will improve

their productivity?

... telling teams how to organize themselves will make

you be liked?

... centrally maintaining file structures will reduce

backup times?

... cataloguing data is more efficient than searching via google?

Having two people think is superior to just one

In your company or elsewhere, did you ever

observe ...

... people arguing on who is entitled to speak

about a particular subject based on position

rather than knowledge?

... people think one is lazy or has serious

deficits if two people are working at the same

screen for longer periods of time?

... several departments working on the same

subject?

... these departments sharing their experience on a regular basis and

focussing on particular aspects rather than complaining to an abstract

force about their lost pride?

... people dive alone?

... yourself thinking your projects do not have as much at stake?

2 The Prime Directive

The Prime Directive of agility in Service Operations (PDASO)

(spoken [pidas…] err … wait …)

Optimise everything for speed of use.

This could further be defined as:

The right of each administrative component to be

used at optimum operational velocity is

considered sacred, no Operations personnel may

interfere with the optimum operational velocity

development of administrative components or

tools. Such interference includes introducing

deferring tools, processes, complexity or any

other technology or procedures to an environment

whose computing environment or operating

personnel is incapable of handling such improvements proficiently.

Operations personel may not violate this Prime Directive, even to save their behinds

and/or the ones of their colleagues or superiors, unless they are acting to right an earlier

violation or an accidental contamination of said components. This directive takes

precedence over any and all other considerations, and carries with it the highest moral

obligation.

Never STUbbornly violate PDASO!

3 Making (fr)agility work

3.1 Making the Service Owner work

Finding a proper pendant to the Product Owner you can find in Scrum is maybe

the most difficult task to do. There are — of course — many roles which IT

Service Management has to offer which could qualify. None of them will do the

job without adjustments. Rumours say it also is not easy to get Service Owners

“work” and “do the job”.

Before defining what the Service Owner actually could do, I would first like to

exclude a couple of roles which definitely will not fit, to reduce the sheer number.

Couldn’t the Service <xyz> Managers do this?

They shouldn’t. Roles like Incident Managers,

Availability Managers, Capacity Managers, Service

Catalogue Managers, Service Managers or even IT

Planners are cross-service roles. If there has been a

reason to introduce this role, then there is a need to

share this role among other services, as well as to

provide it separately from other roles. We need a

role which is acting on units of service instead of

cross-service functionality. Anything else will create conflicts, which … slow

things down.

What about the process owners?

No. Same cross-service issues. Also, process owners are responsible for the

design, documentation, policying and assessment of processes themselves rather

than Service Items.

The Service Manager maybe?

May be. A service manager, by definition of best

practice, is “a manager who is responsible for

managing the end-to-end lifecycle of one or more IT

services.”. Now this depends on your organization. If

you’re an IT Service Organization selling services to

external customers, the Service Manager resembles

much of what a Product Manager may be, just that

your products are Services. This would make your Service Manager a decent

Product Manager. It works fine in Situations, where you provide large scale

application or hosting services.

The situation I want to discuss is different. I’d like to fix IT Service Management

to Scrum. In this case we usually have dedicated Research & Development

departments, as well as Product Management in place as internal units or

working with outsourcing partners. What we are searching for is more like a

sparring partner for a classic Product Owner within the IT department who is as

proficient with Operations of particular services in terms of technical issues as

she is with their impact on customers, users and business requirements which

arise thereof. Instead of a Product Manger, who translates customer needs to

producable functionality and cares for their implementation, a Service Owner

translates business and product requirements to IT components and cares for

their provision and operation.

What about the Service Owner?

This is so far the best match I could find. The role of a Service Owner has been

defined in Continual Service Improvement and thus represents a service across

the organization, understands the service components, and according to

standard definition participates in negotiating or is a stakeholder of many

underlying processes like Service Level Management, Asset and Configuration

Management, Change Management, Release and Deployment Management,

Problem Management, etc. Therefore I’m using this role in my work.

However I take the liberty to make a couple of

adjustments:

 Gathering Service Level Requirements

from the customer or negotiating and

maintaining SLAs with the Customer is

according to best practice a secondary role

of the Service Owner. I can understand

this in best practice situations, where the Service Level Manager does this.

In agile environments I would assign this as a primary role to the Service

Owner, since levels of service will have to evolve. This also applies

to SLA reviews. ITIL proposes yearly SLA review meetings with

customers, which shows us, that the cycles which these roles are based on

differ from what we need for agility. Our agile Service Owner must operate

at least in tactical spans, be present in Tac Sessions or even Ops Sessions.

 The Service Owner will most likely also be responsible for ensuring or

negotiating underpinning contracts and Operational Level Agreements.

 At initial stages, the Service Owner will do a lot of the work which an

availability, capacity, configuration or change manager usually does. The

further a service evolves towards best practice — let alone if you throw it

over The Threshold — the more the Service Owner will only use the figures

arising thereof, not generate them or do the actual work.

 The Service Owner in many situations also decides as ultima ratio upon

Change, Asset and Configuration Management, or is at least responsible

for making or obtaining necessary decisions. A good tip is achieving

consensus with Product Owners on such issues.

So that’s it?

The Service Owner is in many aspects a match

of what the Product Owner does, in terms of IT

requirements which are concerned with

operating and delivering the service to market,

with a focus on technology infrastructure and its

operation procedures. She has to function

between service unit, business unit and product

management, with a focus of translating

business and product requirements into actions

to take within the IT Service Organization.

The Service Owner can either be a dedicated person, or even an experienced

administrator with proper knowledge about the product and outstanding people

and business skills. Further information is available in literature about product

owners.

3.2 Making the Coach work

Would it surprise you if I said "Don't!"?

... ?!

My shortest definition of a good IT Coach would be "a good leader who does

neither manage nor administrate nor do any work except in cases of

emergency". Somebody like House.

House? He's a psychotic addict with a severe attention deficit!

Right. And he also:

... does not talk about coaching or who and when should be allowed to do what,

but just inspires on the job.

And freaks the living crap out of his team!

... develops his team's confidence and personal skills while saving lives.

http://en.wikipedia.org/wiki/House_%28TV_series%29

His team does save the lives. He´s a lazy retard!

... never produces his vast knowledge to his employees but uses his skills to find

out what's still missing and offers the right problems to the right people.

That´s the most hilarious definition of clueless I have ever heard!

... does never get in the way of his team doing any patient work except in

situations where life depends on it.

He is lacking professional attitude, that´s it!

... still is more proficient on the general subject as any of his team members.

Which is silly! Managers should manage!

... waits for people to come to him other than staging himself (Ok. I'll withdraw

this one ...)

Now this really was uncalled for!

He also:

... always coaches his people to do and learn on the job anyway.

Trying to avoid getting his hands dirty!

... speaks up to Cuddy, his boss, whenever he encounters a decision which he

deems useless or requires one for the well being of his patients, no matter how

unusual or "uncomfortable" this may feel for some people within the

organization.

He´s a pathetic troublemaker who has a problem with authority!

... does only do so if the situation really requires and he's absolutely sure.

Placing his judgement above anybody else!

... openly appreciates if people outperform him in specialist affairs (at least ... in

terms of his definition of appreciation ...)

To avoid having to admit they are actually better than him!

... secretly enjoys if his team members are more clever than him (prove the

opposite ...)

This is hilarious ...

... puts any of the the above over his own position.

Which is only a consequence of his inability to accept decisions!

He also:

... hates administrative paperwork or chores and consequently tries to avoid

them, so he can concentrate on what's important.

Flees from anything which could involve work!

... rejects requests from his team which only require own brain work and always

accepts personal decisions.

He´s playing with people, can´t make up his mind, and is little assertive!

... is accepted by his team even when he's acting completely unusual because

they are always required to make their own judgements.

Knows zip about good manners and leaves them alone with his mess!

... is a generalist with both medicine and people.

Can't make up his mind!

... is passionate about the essence of his work and cares little about bias.

Is a complete bastard when it comes to handle patients!

... likes people so much as not having to please them all the time.

This is your interpretation. Where do they say that? I call him misanthropic!

He also:

... talks about things on the way.

Doesn't respect people or take the time to answer.

... tries to get everybody out of the meeting room as quickly as possible.

Just wants to be left alone!

... can forget about everything else when working on a problem.

Has neither work-life balance nor any discipline or routine!

... ensures his motivation by caring for things which really interest him.

Deliberately neglects everything he doesn´t like!

He also:

... has a couple of very reliable friends, or well, at least one.

He´s a complete loner who is unable to maintain mutual relationships!

... is able to think cyclic, interdisciplinary and making vast use of it.

Is wasting his time in dreams and drug hallucinations!

... doesn't care about conventional behaviour, rules or roles more than is really

worth.

Is a complete social retard!

... doesn't put himself above everything but sees himself as an instrument of

getting to the point.

Who would respect somebody like him. This is only what he deserves and gets!

What on earth does House have to do with an IT Coach?

If you manage to qualify for all of the above we (and

a couple of other people I guess) may be willing to

be easy on you in terms of psychotic behavior,

deficits ... and maybe even pain killers. Maybe even

find you sympathetic.

If — on top of this — your area of generalistic

expertise is some kind of mixture between

Information Technology, People Dynamics and at

least one extra-professional Geek Domain, you will

probably be a decent IT coach, if you practice.

Who would need such a retard.

Every IT organization would, really. Two or more, dependent on size.

And what for?!

To solve the usual problems:

"We're doing this Scrum thing, but it just won't work with Service

Management."

"We are really brilliant but our Ops department is slowing things down."

"IT and R&D departments are fighting over who is right!"

"We didn´t get any new feature delivered during the last six weeks and

people are arguing over who needs to decide on administrative accounts!"

"Sometimes I get the feeling that they're taking drugs in server

administration!"

Our tech department is asking us for 12 month plans where we want to

switch to rapid development cycles!"

"Our Ops people constantly complain about lack of documentation and too

little training!"

Or maybe:

"Our people are not skilled enough and there

seem to be none available at the markets!"

"Why are our executives the only ones who seem

to think or decide!"

"People are sitting in meetings all day arguing

about who is entitled to do what!"

"Nobody seems to speak up for what he needs to

get his job done!"

"Everything would be fine if people would just take responsibility."

"Product Management only needs to learn how to structure their work!"

"I should really be doing this but they won´t let me!"

How about:

To make agile and best practice methods work togehter?

3.3 Making the Team work

I am a hobby musician. All attempts at denying this

have yet failed. No matter how hard I try, people

seem to notice this even on web pages which I

strictly build for business purposes. Teamwork

sometimes reminds me of concert situations. I

envision being on stage. I'm playing rock music. I

prefer playing rock music, because it is simple, but

effective in terms of fame. Thus, stage situations are

easy:

First, replace in-ear-monitoring with stage monitor

speakers so you get a better feel for the atmo. If

you then should ever happen not to hear yourself

on stage because of the enormous volume, simply

play louder. As a consequence, everybody else will

also have to play louder too which will contribute to

this particular style of music. We will continue on

this until our ears enter natural saturation,

everything will appear equally loud and thus

everything will be equally well balanced. Our

audience will like this sound, because it is definitive, simple and they can bang

their heads on it. To counter ear deterioration we can simply play louder at the

next concert.

The Team is always at the center of attention

This is I believe the standard opener when agile methods come to speak of

teams. Running good teams means enabling an atmosphere of collaboration,

where people can find their way on their own, learn on the job and

communication is targeted at obtaining solutions. The rest will be done by the

people. Teams are where work is done. Work is, what produces results, no

matter how much work is involved. Thus, teams are, where we need to focus our

attention on, when we want to produce results. Not technology. Not procedures.

They only assist.

For the team to do this job, they need to be the best informed people throughout

the organization. A good team leader makes sure that they are. This means, not

only putting the team as a unit, but also the team's members at the center of

attention. So whenever there is a chance, the team members will go and present

their results, negotiate with team members of other teams or units or similar. I

strongly discourage meta-communication via so-called superiors which place

themselves in most meetings and filter the information for their hatchlings. Of

course, any leader should avoid being underinformed. But information is

shareable. Just because team members are informed, that does not mean, a

team leader may not be.

Here´s a box of candies:

You may find it useful to create an atmosphere of

continuous learning, which will be time consuming

enough to do in typical, "modern" organizations.

Team members are usually able to decide on their

own whenever possible, they're intelligent human

beings. Some organizations are told to train them

not to be. You might not want to belong to such

organizations. Both can usually be corrected on the spot.

Delegating results often leads to superior achievements than delegating

methods. You may find it difficult to know how somebody else does things best.

Candies given out for finding solutions or asking intelligent questions taste a

lot better than candies for business results.

Reprimanding mistakes usually is a mistake.

Your mood may influence people more than their notion of achievements.

Using this deliberately belongs to the dark side of the force, except if you're in a

very good mood.

Stability boosts results, especially in highly

volatile surroundings. You are probably in an

excellent position to create stability.

Discouraging any behavior which places status or

achievements over can-do is vital. Achievements are

relics. Only can-do can do.

Simple sketches are possibly completely sufficient

for the basis of discussions, and presentations may

be used as little as possible where simpler means

are sufficient. Color Paint will do really well when

advertising your team.

It is very relieving to accept the fact that everybody, who does anything for

the first time, has no clue about it, and this is perfectly ok.

If one step after the other is done, this usually results in permanent motion.

When appreciating effort, you may find it an interesting intellectual challenge

to really mean it.

If teams have expiration dates, changes

every once in a while will avoid Statusitis.

Otherwise clinging to empty roles or

position may ruin the joyful experience of

working on one´s own skills. Sitting does

not count as a skill.

If the team will predictably almost never

have time to clean up, we can be glad, that

digital systems can be recycled way easier

than be tidied out. For obvious reasons the

collection of slag is discouraged.

When acquiring tools or changing organization, it saves money also to think in

terms of expiration dates.

Concentrating on not killing motivation is more Zen than trying to motivate.

Nobody appreciates on the very first attempt that simple, lazy solutions are in

fact smart.

Encouraging courage is encouraged.

3.4 Making Strategy work

In his famous book “Mintzberg on Management” Henry Mintzberg

states “Strategies need not be deliberate — they can also emerge, more or less.

[…] To manage strategy, then, is to craft thought and action, control and

learning, stability and change. […] To manage strategy is in the first place mostly

to manage stability, not change. (pp. 29-39)”. This has been written already in

1989. In 2004 John Roberts argues, that for volatile environment situations, the

famous Chandler’s Dictum, that “structure follows strategy”, has to be reversed

(“The modern Firm”, pp. 27-31).

This is important for us to understand how IT startegy emerges, and what is

involved:

Thinking in cycles: Understanding agility in IT strategy

In volatile environment situations, strategy will have to be frequently adjusted as

the organization reacts to environmental factors like market conditions, user

acceptance, trends and similar. These adjustments, which also include decisions

on IT procedures and infrastructure, are the result of decisions and actions which

stem from within the organization. These decisions and actions depend on the

structure of an organization, which has already been put into place, as its

members are subject to it. And thus, reversing Chandler’s Dictum, strategy

follows structure.

Sounds freaky. But what are the consequences?

Here’s a list of thoughts. This is only valid for environment situations wich

involve rapid change, where you usually want to apply agile techniques:

 It does not make sense to plan and structure your Service architecture or

operation platform too far in advance. This is even one of the most

dangerous things to do. If you’re doing so, you will influence your

perception of the services’ performance, user acceptance, because you’re

viewing it through the goggles which you have created by your

administative platform. This picture may have nothing to do with what the

user or customer perceives, even though figures may show you that you

are “right”. There is no right or wrong in perception. On neither side.

 It also tells us that there is some sort of blurry

threshold (I’ll call it “the Threshold”). Strategy

seems to emerge as a program on one side,

and it seems to be structurable in plans on the

other side. This threshold marks the transition

from agility to best practice. Deciding upon

whether a component should be driven on the agile or the best

practice side and setting a constraining corridor for orientation is,

what a Strategy Session should be about.

 It also means, you can start out with just any practice, as long as you’re

willing to review it on a regular basis. Only if you can and will make

adjustments based on unbiased observations, prioritising customer and

user feedback over any other opinion. Even though some people will not

like to hear this.

Can you give examples for the dangers of overdoing structure?

Sure. Here are a couple:

 If you measure your freshly created service in

terms of an availability management suite which

has already been in place, you are more likely to

estimate its performance as poor, the more

components you already have which are running fine under best practice.

For your mind will always unconsciously compare them.

 If you are running products from agile development through change

boards you will very likely reduce the release cycles far below what market

requires. Yet you will perceive the release requirements as chaotic rush.

 If your network infrastructure in place requires a lot of changes to be

executed before a new server or connection can be taken online, you will

probably cause more side cost than a feature is actually worth at this point

in time. So you’re likely to estimate the return of investment of this

service low, where it would possibly be decent if you’d have done it with

properly scaled procedures and technology. This again will influence your

future investments.

This is also the reason when sizing the hardware or procedures of a

service for too many users at the beginning, you will have one disastrous

period of blame where you will get the impression, that the service is

nothing but a waste of money. It wouldn’t be, if you’s have begun smaller.

Our subconsciousness cannot eliminate these investments, as we perceive

the money spent in terms of machine sizing, the number of team

members, and many more factors, even if we present calculations where

we eliminate those costs, likeEBITDA.

 If your decisions are based on a balanced

scorecard system which is already in place, then

you are most likely to underestimate anything

which didn’t reach a state which you can

properly measure it yet. However nowadays

almost all champs stem from such conditions.

However your organizational decision structure

may already prefer cash cows.

 In complex decision situations you are likely to compare any new feature

with experiences you felt comfortable with from the past of your

organization rather than how the market is perceiving them. This is owing

to the fact that your decisions reflect your organization’s memory, which is

completely natural. Cyclic development with rapid time to market however

needs to have its bubbles, where you can decide independently.

Experience is for creating proficiency, not some source of esoteric

knowledge.

How can I decide on agile procedures or best practice?

There are several perspectives you can look upon your Service Universe which

help you form your opinion:

 vertically in terms of Services — This means

you review your service in Terms of user

functionality (or as a whole) if it has reached

a stage where you could apply best practice.

Indicators may be availabilty figures, user

base, ease of applying changes, service

lifetime, revenue streams and many more.

 horizontally in terms of shared capabilities —

There can also be layers or components of

your Service Universe transitioning to best practice, which are shared

among or used by many services. This is typically the case for hosting

platforms, operating systems, standardised hardware, company wide

shared libraries, communication infrastructure components, your company

or hosting network, etc. These components possess high affinity to shift

towards best practice. This will help ensure your overall quality of service,

but can slow you down if you’re not careful.

Other perspectives can include: software release cycles, achieved service level

definitions, revenue streams and many more.

What’s the implication on moving a Service to best practice?

This means that the prerequisites will have to be met for the service to be run

under best practice. This will have an impact on release cycles, which will most

likely be less frequent. There will be more overhead involved in deciding upon

changes. I.e. to gain stability you trade in flexibility.

To put it blank: Whatever you throw over the threshold of best practice

will have a high chance to clash with agile development methods.

What are techniques you usually use in agile

practice, which you avoid in best practice?

In agile Service Management environments:

 programmers will usually have administrative

access to live servers

 roll-outs can be decided upon without change

advisory boards on an informal basis

 service levels are being defined in terms of service aspects rather than

quality figures

 Service Owners will do many jobs which are usually done by Service Level

Managers, Availability Managers, Capacity Managers and the like

 comprehensive documentation is almost never available and thus a lot of

knowledge will have to be in the minds of people.

How do Strategy Sessions interface with agile development

methods?

Part of this is resembled by the review and retrospective meetings, so they are

welcome occasions to link them to Strategy Sessions. I recommend to have them

monthly at the introduction of a new service, and gradually reduce the number to

quarterly sessions as your service becomes more stable.

What are important issues to talk about in Strategy Session?

 The services’ stability in terms of availability, maintainability, utility,

warranty and release cycles

 decisions on components to transition to best practice.

 prospective funds

 upcoming major releases or changes to software or hardware and their

impact on architecture or any other issue discussed above.

 risk management, security and service continuity issues

 360 degree feed-back upon the mutual business relationship

A word on people?

I’ve seldom met people who work well on both sides of the Threshold. In fact, I

know none. Either you’re hot for agility, or you’re hot for stability. When placing

your personnel, make your pick wisely. Believe me, I know what I’m talking

about.

3.5 Making Tactics work

This is a stage Agile development methods usually do not really focus on, but

which we need for agility in Service Management. Half of what you do at the end

of a Scrum Sprint could be considered tactical, for example during your review or

retrospective session, or as part of sprint planning. But I’d call the other half part

of an evolving strategy, which we can do at a different time scale within IT

Service Management. We’ll call this the tactical level within (fr)agility (which is

also common to do in Service Management).

To drive tactics I recommend a per Service (or group of Services with common

stakeholders) Tac Session.

What do we do in Tac Session?

Tac Session is there to make sure that Services keep running as they are, under

the assumption that there are no major changes to its current state or

configuration. As a consequence, you discuss in Tac Session what has to be done

if the Service is just driven the way it is right now.

Adjustments which arise thereof have to be communicated (and best be decided

upon) during Tac Session.

What could happen, so I have to make adjustments?

There are a couple of factors which influence regular operations of a service,

even if there are no upgrades to its technology, software or configuration:

 changes in user base — could cause changes in CPU, file space or

bandwith usage.

 changes in user behavior — could do the same.

 changes in general infrastructure components — could change constraints

for operating a service.

 changes in administrative workforce — could effect availability, utulity and

warranty dependent on the volatility of the service.

 changes in maintainability — regularly occurring bugs caused by user

behavior or (maybe unknown) system states could have an impact on

availability.

If you keep thinking on this, you will probably come up with a couple more,

however I think those are the most important aspects of a service to be

discussed.

Who should attend this meeting?

Every stakeholder of a Service should, really. As I have already recommended

for fixing Service Level Agreements, it makes little sense to define quality of

service in terms of abstract quality figures when doing iterative development

cycles or when operating in volatile environments. Therefore providing for utility

and warranty depends a lot on mutual trust. Tac Session is your key to

organizing stakeholder communication, which can create this mutual feeling of

confidence.

Which items should be discussed?

Anything which would impact the quality of

service, if no action were taken. What I’ve written

above:

 Capacity trends, in terms of CPU, file space,

network bandwith or memory usage

 Availability figures (min, max, average)

 perceived Utility and Warranty by your users

and customers

Connecting stakeholder feedback with your trends helps translate gut feelings

and service perception gradually into measurable terms. They will be able to tell

you if they found acceptable what they got, or not. But don’t expect too much in

the beginning.

At a minimum, Team, Service Owner, your corresponding Product owner, if

applicable, and a member of the development team. and a stakeholder

representative which can decide on funds need to attend this meeting, since any

capacity or availability issues will usually involve expenditure decisions,

architecture or ownership changes.

In stable environments, where you have defined quality, you don’t need to talk

on availability and capacity trends this often, if proper monitoring is in place. In

volatile environments, especially at early release stages: The more often you do

this dialogue, the better.

Wouldn’t we need to base this on underpinning contracts?

ITIL usualy tell you to discuss availability and capacity issues “as defined in

Service Level Agreements and Operational Level Agreements”. These of course

need to take any underpinning contracts into account. Alas, in volatile

environments we’re at a loss there. Like strategy is evolving programmatically,

http://aliando.com/AliandoThings/65/fix-service-level-agreements

we also have to “learn” the SLA by increasing mutual

understanding of our actions and their observed

consequences. If there are underpinning contracts,

you could consider inviting a representative of your

outsourcing partner to Tac Session.

We better start communicating our experience before

our stakeholders will tell us “Our experience tells us

that we’d rather see availability reports on a weekly

basis from you.”

How often should we conduct this meeting?

At initial stages I recommend doing this weekly, then gradually change to

biweekly and expand as you see fit. This depends on the amount of trust you can

achieve between your stakeholders, the quality of your software, hardware

platform, administrators, the volatility of your environment, and many more. I

really cannot make any better recommendation. You will have to find out on your

own.

If the pace works for you, you could connect this to your Sprint review or Sprint

planning meetings. But this is not a must.

What do I need to prepare for this meeting?

Meaningful graphs on the availability and capacity

issues discussed above. Without them, this is a

waste, since you will end up in endless discussions on

stakeholder perception which you cannot translate to

facts and derive actions from them. Then, this

meeting usually ends with any technical personnel

promising to do everything better in the future,

business people promising goodwill if it happens, and

every body is leaving with a feeling of having been

completely misunderstood and severe doubts the other part will ever get their

share done.

What additional questions could you ask?

You could ask:

 your administrator, whether it felt like a pain running this service.

 your customer, if there is anything else you could do for him

 your user, if there is anything you could do better, if you could grant her

three wishes right away.

 your product owner, what was getting on her nerves most.

Foul Eggs

To obtain realistic judgements on perceptions of

maintainability and quality of service, I recommend

handing each attendant of Tac Session a set of

rubber “foul eggs” (or paper equivalents thereof).

Upon request, everybody may assign foul eggs to

the service by placing them in the middle of the

table.

Tac Session should not be finished before any issue related to foul eggs has been

treated in a way, that there have been traceable tasks assigned to responsive

drivers to resolve the issue, along with a mutual understanding that this solution

is the best the team can due in terms of their current understanding of the

Service.

3.6 Making Ops Work

This article only descibes the problems with dynamics in administrative

operations, focusing ondaily routine within volatile production

environments. As a prerequisite, we recommend the intense, self-aware

contemplation of:

 The Prime Directive

 The Second Law of Administrative Dynamics

 The rest of the site above this level.

 Dilbert

IT Operations can be conducted with agility, however there are some important

differences to methods like Scrum, or software engineering as a whole:

 In IT Service Management you usually have no pre-planned stories, but

services which produce a certain number of expectable (change, service

request) and random events (incident, problem). Therefore your stories

are more like “permanent issues” which produce tasks on an irregular

basis

 You can usually forget about estimating size. Your scale differs from huge

to tiny, and there’s an imbalance towards the huge and tiny issues.

http://aliando.com/AliandoPrimeDirective
http://aliando.com/AliandoThings/64/fix-repositories#SecondLaw

 Your job usually feels more like juggling balls in the air than burning down

charts.

 Burn down charts are of little use. You’ll be glad if your watermark won’t

rise above unhealthy levels.

What about this juggling? What and how do you juggle?

You’re juggling standard IT Service Management items:

 incidents — will occur randomly. Fixing them consumes a certain amount

of daily resources, the more volatile your environment and the hotter off

the presses your software, the bigger this amount will be. Usually they’re

being resolved within the day. They’re usually are not a big issue in terms

of organization and don’t need to be discussed in a daily Ops

session, unless they’re major incidents.

 sticky incidents — could either not be resolved within the same day or will

return. They consume more time. You should keep track of those and

discuss them at any case in your daily Ops Session, as long as they’re not

known problems and resolved via change.

 problems — will arise from incidents. You should track them in Ops

Session, maybe this would be something to estimate. Take care that

people who work on problems do not also work on incidents, for this will

create conflicts which cost time and quality.

 changes, service requests — can be planned just as story items and tasks.

 You can organize them with any means you see fit and scale, if it can

order, prioritize respectively tag them and be used by a team. It’s not the

software, it’s the collaborative attitude.

Dependent on the number of Services, when you

match agile development methods with Service

Management procedures, you may start by replacing

“User Stories” with Services, or major releases

thereof, and “tasks” with the items described thereof.

However there may be a time, where the number of

services you manage becomes to large for this to be

efficient. You may then either split up your teams,

bundle services or convert parts of your service

portfolio from agility to best practice operations. But this really depends on your

very situation and placing any recommendations therefore on this website

wouldn’t be too serious.

There will also be a couple of internal projects for you to do to build your

administrative infrastructure. Just develop them using regular Scrum, XP or

Crystal Clear. That’s not something I will discuss here.

How often do you juggle, and what is this Ops Session?

You’re juggling at least once, if not twice daily. Ops Session is a meeting for

operational, short term coordination for issues of daily chores. You typically time

box it to 15 minutes at most.

There are three types of issues:

 operational issues — which you will discuss daily,

 tactical issues — which you will discuss only on a mid-term basis, e.g.

every one, two or three weeks, like capacities and availabilities, and

 strategy issues — which you will only discuss manually countable times

per year.

Ops Session is a daily session for the team to point each other at the most

important stuff which is on the way, and telling the others what they don’t have

to care about because you are going to do it. It’s also a good chance for the

team to communicate any issues to the IT Coach, which they do not want or

don’t have the the time or capability to resolve on their own. This meeting can

ideally be placed at the overlapping phase at the end or start of shifts, if

applicable.

How do you assign roles?

You don’t. Whoever is best proficient to do a certain

job and free to do, does it. The team can decide on

its own upon this issue. Therefore, the team should

share its (physical or at least virtual) workspace.

However, everybody in your team should have

proficient knowledge about the typical roles of

standard IT service management, i.e. what an

incident manager does, what a problem manager

does, how second and third levels work, what

availiability as well as capacity management do, and

your way of doing configuration management, just to name the most important

of them for daily operations. Flexibility arises from proficiency, so this is your

obligation.

This has to be done by your people. From an outside perspective, you are not

entitled to plan who will be doing what. There is no way for an observer to judge

who will be best in doing a certain job, because this decision depends on the

current state of team operations, and how this state will change upon the

perception of any alteration. This means, you do not know how the team will

perceive whatever you want to impose on them, what this does to their

motivation, neither do you have sufficient knowledge to judge it. Even if you try

to measure it, this will change the results. I’ve been discussing this in detail in

my introduction on organizational entanglement.

So all you can really do is set a goal for the team (or better let the team set a

goal for itself), and provide the opportunities for the team to self-organize

towards it. If you want to konw more about how the team works, please

continue here.

Who should attend the meeting?

The team should attend. Service Owners and IT

Coaches are considered to be part of the team.

However, the IT Coach concentrates on issues and

people work, and the Service Owner is responsible

for providing decisions or answering any questions

the team comes up with.

Anybody else might attend, if the team so desires. The IT Coach or Service

Owner should make sure they attend. The IT Coach usually also moderates this

meeting to stay tuned and collects impediments.

For the rest of the day … just let people do their work!

What should I prepare for this session?

The usual you prepare for agile daily sessions:

 What did I do yesterday?

 What am I going to do today?

 What’s hindering me from doing my work?

You should be able to do this session without preparation. It helps having some

sort of task board. What it does look like varies, dependent on the size of your

organization.

Isn’t an Ops Session twice a day time

consuming?

Not really, if you avoid discussing content, and rather

quickly point each other to the most pressing issues.

http://aliando.com/AliandoManagement
http://aliando.com/AliandoWork/77/making-the-team-work

Besides, the motto“Nobody leaves the ship unless unresolved issues have been

decided upon” has proven to be very helpful.

You should not care about capacity and availability in this session unless there

has been an incident connected to them. Capacity and availability are tactical

issues, they’re not worth discussing here, since you will not be able to do

anything about them, since they usually involve larger scale decisions or involve

additional funds. There’s a Tac Session to do this. If you avoid these issues, your

Ops Session should be short.

Your primary focus are items of daily business which you will work on at the very

same day. Otherwise the usual rule applies: the most eligble person does the

job. They can decide for themselves.

What would be typical performance measurement I could do?

If you insist on measuring, you could do the following:

 the number of incidents or problems per week (which gives you an

overview of the fire which hits your service organization)

 the number of times people needed to switch their work between two

items without finishing one of the both (which is a critical success factor

for the efficiency and sanity on your people)

 the percentage of slack the team had to work on problems (which is an

alert figure, if it drops, since tech people do like to work on problems)

 the number of pizzas you provided on the house (only if the team tells you

they like pizza)

You shouldn’t put up any number which the team doesn’t deem necessary to

achieve a set target. If you do, only use it to work on your own personal

performance. If it’s not good for working on your own personal performance,

drop it.

4 Fixing Things

4.1 Fix Repositories

I have seen many airports in many countries. I have

seen many travellers. I am a very open minded

person and in principle can imagine quite a lot.

However I’ve seldom seen somebody at the airport

studying a detailed construction plan of the building

when trying to find their way to the gate. I also

cannot imagine this to be a superior strategy,

especially when you’re in a hurry. — However this is about the level of

configuration documentation being asked for in IT Service Departments to give

people a feeling of security when administering services.

Remind you, as a direct consequence from the Prime Directive:

It must work when you’re really really in a hurry and have no clue how

you are able to still catch this flight.

We’ve already dealt with the documentation part in Fixing

Documentation. So let’s concentrate on what’s important

when we think of flights: Route information.

In the Late 90s switching started to be a superior protocol

to routing, because using static tables enabled faster

routing decisions than resolving the routing tables with

every packet. Eventually routing and switching were

combined to exploit the advantage of both. I still consider

this a decent solution.

But what does that mean for repositories?

Let’s try to dismantle routing and switching at airports. In this example, the

detailed map of the building consists of our complete network topology. It should

be obvious that reanalysing topology is not suitable for fast passenger switching.

At first attempt, we need something like routing tables. Do we find routing tables

at airports? I think yes. That’s what the signs with directories do, which read

“Gwennair, Terminal A”, “(Fr)agility Wings, Terminal D”, etc. Wherever we arrive

at the airport, we these routing tables and can find the right direction to dash in.

Those directories do not only lead us the way, they also keep us from getting lost

(and thus losing time) by hiding detail. But from doing this arises the obligation

to follow up. If we trust in these directories and hurry up, further information

must follow in time. This information may vary: “Gwennair passengers use

http://aliando.com/AliandoThings/67/fix-documentation
http://aliando.com/AliandoThings/67/fix-documentation

checkins D104-125.”, “(Fr)agility Air passengers please proceed to Gate D45”,

“Mr. President, …”

So Directories list instances which are related to a

certain kind of service, and connect them to

destinations, so we can make routing decisions

when we are going our path trying to find this

instance. Having this directory of instances with

their destinations at a central place with up to date

information is one of the most vital points in

operating IT services. Otherwise, you may end up

having to explain that you cannot bring this

machine back up because you don’t know which

hosting center (maybe town …) to go to.

Detailed, highly meshed representations of configuration items may work for

developing projects, implementing new servers and the like. They are of little use

for Ops. Movies may create the impression that they do. You’ve probably seen

it. Somebody who has to sneak into building. A team operates in some rundown

industrial park backoffice, eats incredibly complex and complicated maps, and

digests them into clues for the poor fellow outside who has to find his way. I can

find a couple of illusions there:

 The effect is only effective, because those maps create an air of technically

insane achievement, where all they really consist of are meaningless

projections on some fancy, shiny plastic. Sorry to be the disillusionist

there.

 People in there are really cool because it is so incredible, that one can

grasp all that information and translate it to clues in next to no time.

Despite, most of the time they also really do look cool. This effect only

works, because reality usually differs, otherwise there wouldn’t be

anything special about it. Ops is about getting servers to work, not about

being special. I’m not commenting on the looks.

 Movies are timeless. The contents of the screens in

Star Trek (2009) will not seem very outdated to us by

2015. The screens of The Original Series may by 2010,

however not judging by its contents.

 The poor guy outside is only getting along with this

information, because there’s this team sitting in his head

via radio, or maybe even retina projection. Alas, we do

not have retina projection readily available. In most

cases your colleagues will be so tied up with mundane work, that they just

can’t find the time to coach you your way.

So you’re alone out there in this complex world of hosting centre. And you still

need to catch that plane.

So if technocracy won’t help, what will?

Signposts. No matter whether analog or digital technology. If you know your

destination and you can find decent signs on the way, you’re all set. This is

obvious for buildings, hosting center rooms, racks, stacks, machines. Where this

is not as obvious are digital signs, because there is a much bigger variety and

they blend a lot more with their background. People find this technique less

intrusive. We only need to remain aware of the fact that the signs are there.

You can build your digital signpost pathways, for

example like this:

 Hyperlinks from your Service Dashboard to

the very next level of complexity

 Standardized installation locations for

services and file system links to those

things you need to find quick, when you’re

in a hurry and do not have time to look stuff

up

 Consistent, hierarchical typing and naming of files. For example

Service.conf can contain the global configuration data for a service.

Service.log its global log. Service.Process.log the log of a particular

component named “Process”.

 In the above example Service.conf could again be a directory, which

enables you to find further instances of this particular service.

 Any other, mutually proficient way of doing this will work.

The Second Law of Administrative Dynamics

From this, we can postulate the Second Law of Administrative Dynamics,

based on the General Directive:

Within an isolated IT Service Universe, the entropy of administrative

proficiency will tend to increase over time, approaching a maxium at

equilibrial deadlock.

In easier words: Within any company, as only time passes and nothing else is done about it, the can-do of Operations

(and a ton of other) people has a tendency to decrease, until it culminates in a mutual deadlock where nothing can be

achieved anymore.

As a direct consequence, we get Administrative (Di-)Lemma #1:

To retain momentum, an administrator, knowing any destination within

his or her IT Service Universe, must be able to find the way through

technology as a self driven system.

This means:

Once an administrator encounters any comprehensive name of an instance of a

particular Service managed in his domain, he or she needs to be able to locate,

pursue and reach it starting from his/her administrative interface without any

further lookups than those in directories and signposts, analogue or digital.

Whatever knowledge is required to accomplish this task must be located in the

administrator’s working memory (brain), not any form of swap space (paper, file

or database).

It does not make any difference if the information required is meta information on how

things are done at your site, keys files which aren’t in place, accounts which have been

locked out, passphrases, or similar. Administrators who are not capable of following this

directive with no exception are subject to report this to their colleagues, superiors and

pets immediately. It is not considered heroic to try to “wing it”.

Isn’t this an illusion?

It is highly effective, and frankly, the only way. As a

result, your demand for detailed documentation will

drop drastically. On the other hand, if you cannot

handle things like this, then I really recommend

considering the following:

 Are you running too many things for you to

proficiently comprehend when “time to <something>“

is a relevant concept?

 Are you using your administrative infrastructure too seldom, because you are

kept up with different things? This may be the case and is perfectly ok. But it

reduces your incident skills, and the team must know.

 Did you tell them?

 Is your underlying infrastructure necessarily this complex, for example for

reasons of security (which I doubt)? Things will be slower, then, also in case of

incidents. This will increase stress.

 Did you tell your organization?

 If there is no way around additional tools, they must be highly available,

highly reliable, and you must be highly proficient, skilled and trained using them.

They must be comprehensive, and if they’re big, they need to be thoroughly

structured by directories and signs. For example if you use password files. To

maintain high velocity proficiency, usually multiple daily use is required. Are you

keeping up with this prerequisite?

As an additional service, we

recommend making sure your virtual

signs have exact copies in the real

world, so you can always get up and

dash along the signposts whenever

there should a sudden need arise to

find the real machine in your hosting

centre in case of hardware failure. This

may become a problem if your

administrative universe consists of

some 1000 pizza boxes.

4.2 Fix Administrative Interfaces

Sometimes I think this part is so simple that it’s not worth while mentioning.

Sometimes I think it is so vital to make things function smoothly that it’s one of

the most important aspects of Service Management at all. It’s of course the

Prime Directive. But this time we instantiate it.

The Prime Directive of agility for administrative interfaces

Optimise administrative interfaces for speed of use.

This statement contains some vital conflicts which

have caused havoc in many IT Service Organizations:

 personal speed of use — requires to use just

the tools everybody is proficient with best. On

large scale, this leads to severe Toolitis, which

… slows things down.

 general speed of use — is a mild compromise

and will, apart from power struggles, terminally

lead to Gadget Miraculosis, as soon as all candidates for best compromise

http://aliando.com/ClinicPathology
http://aliando.com/ClinicPathology/39/miraculosis-hoping-for-wonders

have been considered and dumped. Which … slows things down.

So what then do you consider an optimum?

The optimum Administrative Interface shows the following traits:

 it is only one click away from your administrator’s

desk

 it has exactly one central entry point per service

 it has only one central entry point at all

This central entry point

 should be redundant (you wouldn’t want your administrative interface to

be taken down by incident, would you?)

 could, to reduce administrative overhead, be cloneable to individual

administrator’s machines

And in terms of functionality?

In terms of functionality it should:

 contain the basic performance data of a service, in terms of running state

(up/down) with history graph, availability and capacity charts

 links to Baseline Documentation, Component Repositories and Service

Notes

 possess an easy interface to write Service Notes

 provide information on the most important contacts for escalation

 provide information on the agreed Service Aspects

Avoid anything else which the team does not consider vitally necessary for

rapidly bringing the service back online in case of failure.

4.3 Fix Documentation

Let me start with a story. Once upon a time …

… at WEB .DE we had a ton of administrators complaining about a decent lack of

documentation. However, no matter how much docs we actually produced would

improve anything. I remember one hilarious attempt at charting our services, a

server chart almost filling a wall. The comment of Carsten upon introducing it to

me, with a slight chuckle: “Well, it’s already outdated …”

At the same time we were recruiting a lot of

newbies. In the early 2000s good Linux people were

not readily available all over Germany, especially if

they should know their way through internet services

which scale. So we introduced a boot camp. Our

way of making use of probation. Boot camp meant,

the newbies would have an introductory session

every other day to one particular subject which was important for running our

suite, which lasted about an hour and a half. The rest of the day was dedicated

to self study with a couple of links to walk them through. The day after, our

incident manager on duty piggy bagged them to get them into it.

The introductories were held by our administrators, each by the one who was

suited best. Permanents, who wanted to get a refresher, were free to join at any

time.

What happened?

A couple of months later nobody was complaining anymore about a lack of

documentation. It vanished. What happened was this: The felt lack of

documentation was really a feeling of insecurity. An insecurity arising from the

imagination, in case of failure not to know which buttons to push. If you don’t

know it, you need a source to read up on. If you have no single entry point to

get this source within your organization, you are at a loss and feel

underinformed, or in chaos. Those introductory sessions gave everybody a

refresher on the most important things, which was decently up to date. So

everybody knew what to do.

What we really learned from this is: There wouldn’t

really have been a chance to write this “knowledge”

down to documentation. In case of failure, where it

was needed most, it would have taken way too long

to look all this up, and panic contributed its own

share to keep the minds from comprehension. This

definitely was not a documentation issue.

Documentation, as we all envision it, seems to me like an illusion. Nobody will

ever have the time to keep it up to date, and it can never be both simple enough

for operative purposes and comprehensive for administrative reference. No

matter how professional a project has been established. I have never

encountered documentation on a service, which was not outdated at some point

of time. This may work for R&D. If it doesn’t work in your program, you ask. But

this will be really hazardous for IT Operations, if you rely on such documentation

during night shift where nobody else is available to ask.

So how would you organize documentation?

I would split documentation in three parts, always

 Baseline Documentation

 Instance Diretory and

 Service Notes

Baseline Documentation

Baseline documentation contains the basic

description of what services are composed of, what

they do, how they interact and how you can

administrate them. The baseline documentation

needs to contain everything which is proprietary, so

a person who is new to the company, but a proficient

computer scientist or administrator, will get the hang

of what we’re doing by reading this documentation. However, she still cannot

find any servers to administer, since there is no information of instances or

current configurations in this documentation.

So there are entity relationship-diagrams, class diagrams, component diagrams,

process chains for all they’re worth, interface specifications and the like.

The advantages if this documentation are:

 Its change rate is very low. Therefore reading it provides knowledge which

will last.

 You usually only need to update this with major releases. So it is little

work. Little work means changes are good it will be kept up to date.

 Reading this documentation will provide you with knowledge which is

worth memorizing. It bridges your mind from theory to practical

application without stuffing you with useless details which are useless after

your next server upgrade.

Instance Directory

Baseline documentation provides you with server classes. To administer real

machines you need to know which instances thereof exist in your hosting

centers. For doing this you consult an instance directory. This directory should

give you (among other things) also an overview of all instances for any given

component class of a particular service.

I will discuss this directory in detail when showing “How to fix repositories”, so

this should be enough for here.

Service Notes

Whenever you administer a service, for incident or

upgrade — given that you studied the baseline

documentation, thus you know what the service is

about, and you know the instances, thus you know

what you fidget with — the most imminent question

you will have is: What has been done to this server

or service last. Or even last -1, last -2 or last -3.

You don’t want to redo anything which has been

already done, and in case somebody changed the

configuration, you want to know it instead of

desperately searching for errors which are just

obvious. Apparently, writing this to baseline documentation is of little use. How

would you find it. On the other hand, this has to be updated whenever somebody

does a change to a server. So this has to be really easy to update.

So what’s your solution?

This is what we introduced Service Notes for. Service notes are very simple. It is

just some sort of change log, mangled with other useful information. It doesn’t

only comprehend configuration changes, but everything an administrator found

worth while noting. You could implement it on a blog, svn history with one file

per server, mailbox or whatever. Anything which can have time stamp, message

and creator with the ability to sort by time. So if you administer a service, it is

very easy for you to look up what’s been done to this service during the last two

or three weeks. Usually this list is well below 5 items, so the time scanning

through it is really not worth while mentioning. If the list is a lot bigger, you are

right to be sceptic, draw your consequences, and talk to those people you can

identify from the notes. Together with Baseline Documentation and Instance

Directory you know everything you must for proper administration of this

service.

One final note: The most important thing is that Service Notes are easy to write.

Otherwise they will not be comprehensive, which is as fatal as outdated

documentation. At the same time, limit the length, so they have content rather

than a ton of words to find your needle in. In any case I recommend a central

place where whoever does any administrative action can just drop a couple of

words into an input field about what they changed, and pull the trigger. This

central place should be a one-click from their desktops.

What would I implement this with?

If you acquired some tool which comprehends this

functionality, cool, go use it. If you acquired a couple

of tools, which together provide this functionality,

merge them via <something>. If you bought a ton

of tools, you may consider reviewing your practice.

Whatever I’m recommending here, my experience is

that most administrators will tend to disagree. Do

this with whatever you see fit best. This could, at an

initial stage, be done via simple web pages. One

page per service, neatly designed, with the most important information linked in.

Some form of LAMP system with secure shell infrastructure underneath for

example. This still works pretty reliable and has enough flexibility. If you’re

skilled in using links with custom protocol designators, people could even

configure their own tools to do the job, if they really must, since the link will only

yield the target, and one standard way to do things.

This does sound a bit like home cooking

Home cooked food tastes good, fills you up, is less

expensive than restaurants, you know the ingredients

and can guarantee healthy components if you prefer,

plus the process of cooking provides you with

proficiency on operating the kitchen platform. You

usually know best how to operate something if you have

built some components of it yourself. This does really

become a problem once your platform gets so big that

adding new functionality creates resource problems or

you need to scale this platform for performance reasons

which always adds complexity. But homemade solutions for this purpose hold far

longer than some vendors and researchers want to make us believe, and the

effort of building it has way more to it than being a waste.

But what am I talking. You’re the administrators, and know best how to do this

stuff. All I’m asking is to put the above requirements over personal preferences

and never STUpidly violate the Prime Directive for agility in Service Operations.

4.4 Fix Service Advisory Boards

To fix service …visory, it appe… best … me … abolis… … al… … …

I feel a sudden dizziness. My eyes are getting heavy. Monotonous voices from

my telephone receiver gently talk me into dreamland …

…ooOO(I see people involved in email discussions,

sitting in front of their screens and getting all worked

up in next to no time. They get upset, because they

don’t see the smiles of other people, as they write

their thoughts into digitally bottled messages. I see

them reframing their lack of non-verbal attitude

exchangestraight into maximum malevolence. I

envision Godwin sitting on a cloud, watching. And I think to myself: “Geez, get

up, meet for just the sake of five minutes’ digital silence, and get things straight

instead of steadily “inviting” more carbon copy spectators to your virtual

showdown!”)

…ooOO(My vision blurs, and I find myself in a completely different scenery. I

see the same people sitting at a huge desk. No, wait. Half of them are sitting at

their office desks with headphones on their ears and microphones under their

nose. Apparently they are involved in some sort of information phishing. They

trade facts for figures to do some sort of collection for an upcoming event. To

have a proper decision base for some kind of action they call “release”. I have

never seen so many important people at the same time finding slots to actually

conduct a meeting. I had no clue collections were the reason for it. I see their

secretaries lurk with little understanding pondering to engage their self

destruction sequence. It appears to me there is more to this meeting than just

information exchange. I have a sudden feeling this is wrong and something

strange is going on. Look out, here … I wake up.)

Isn’t not arguing a good thing?

I could see the point that in person communication

can help resolve conflicts, and brings a feeling of

mutual responsibility. If it were not for the fact, that

exactly this is, what the same people usually look

down upon as useless child play. But to speak in

responsibility, each service has its unique service

owner. The service owner has to decide upon what is

being rolled out and what not. It is her obligation to

collect whatever information she needs to

substantiate her decision, in any situative way she

sees fit.

I think service advisory boards are really about the

chairs. The fact who is entitled to be asked before a

decision is made. Being asked as an expert before

decisions provides people with an air of being

important. Having to be asked as a must before

something happens is the ultimate. And exactly this

feeling of ultimacy makes me want to abolish

service advisory boards altogether. A notion of

importance on a bad day will result in a delusions of grandeur. And

communicating with deluded people on intellectual traits such as decision making

only leads to useless power struggles which create tedious breathing noises

especially during large telco sessions.

Doesn’t this improve collaboration?

So it appears to me, that being member of a service

advisory board is rather a social asset which makes people

feel empowered instead of a proper vehicle to empower

decisions. I do not say this is the case everywhere. In your

company, this will most likely not be the case. I just say

there is a tendency, that these struggles arise, and if there

is chance they will, probably exactly then when you least

need them. At least my risk management would want to

get rid of advisory boards under these circumstances.

These discussions lead nowhere, host heavy power

struggles, waste a ton of time and money, provide the service owner with exact

knowledge about the personal preferences and

attitudes of the attendants, and leaves everybody

with the feeling: “Well, this was one hell of a tough

day, but we reallymanaged to get this done.” Only

nobody knows what “this” really was.

Then the Service Owner has to make her decision,

hopefully not without a mailbox full of non-

emotional facts to reconsider.

4.5 Fix Service Level Agreements

As I took my first glance at ITIL V3, I noticed two “upgrades”: from simple

“Service Catalogue” to “Service Portfolio” and from simple “Service Level

Agreement” to “Multi Layer Service Level Agreement.”

I was seriously asking myself who the recipient for

these books is and came the conclusion: it must be

“the big guys”. The ones to rule them all after small

and medium businesses made their maker. Just

kidding. Not. While it probably is a decent strategy

for encyclopaedic works to enumerate all possible

use cases for techniques comprehensively, this

showed me that there is no built-in scaling guide to the approach.

In agile Situations, we are dealing with completely different problems, for

example: Understanding Service Level. One of the most vital points in

successfully launching services to market is to timely grasp appropriate utility,

warranty and their translation into terms of administrative action at all. Neither

administrator, nor product owners, nor financing executives could say what

availability the service would need during early product stages using rapid

application development techniques. A mutual understanding will have to be

developed which can culminate in translating all those gut feelings to something

more substantial which we can work with.

Quality is always a result

Therefore, before we discuss this, we could postulate a Law of Quality in agile

Service Management which amends the Prime Directive:

Quality is always a result, never a definition.

What do you mean, quality is a result. What are the

consequences?

Postulating quality figures as performance targets

does only make sense if we are able to use them as

guidelines to achieve those targets. Or if we can

pressure anybody to pay big bucks if they don’t

achieve them, and replace our TV set with a big

brother cam. This means for quality figures like

99.99% to make any sense we need to know what to

do to achieve 99.99%. In product stages which we

are talking of in volatile market situations, we most

of the time do not have that knowledge, or at least

can only provide this for very basic, shared components of our service portfolio.

This has several reasons:

 Quality targets are usually there to enforce penalties upon violations, or to

create incentives for avoiding those penalties. This attitude is about as

much anti-agility as you can get. It isn’t that one big surprise that for

environments where agile development methods work nicely, numbered

quality targets don’t.

 Product managers have no clue yet about the user acceptance. Since the

Mid-90s up to 2010 we were concentrating everything on quality.

Nowadays we see that time to market and cheap prices can be way more

important for user acceptance than quality. But this is only one vague

assumption which is far from ready to be put into numbers.

 Without experience with operating the products

you cannot say what you will be willing to endure

on a long term basis, and what will drive you

nuts. Functionality is also subject to change, so

there are no stable trends yet on feature (or

more exactly transaction) scale performance

averages.

 Administrative procedures as well as software

systems are far from being stable. This means

you cannot translate your administrative

procedures, i.e. the concrete actions you take, into prospective quality

figures. You simply don’t know if what you do is the right thing, and

chance just may beat you hard.

 Every one of those .9s behind the comma create an impression of being

expensive. Each missing .9 behind the comma creates an impression of

trashy performance. In an environment where market acceptance is key

but budget is small, this creates a conflict which immobilises people into

thinking “I just don´t know …!”

What can be done about this?

If defining Service Levels in terms of quality targets

does not work, simply define Service Maintenance

Aspects in terms of maintenance procedure, i.e. write

down during which times there cannot be restarts or

updates, even if it’s a silent restart, because chance

at this software maturity level may be that it breaks

anyway. Or write down whether administrators will

have to get up at night time if this service should

break. Or write down how long they will be tolerated

to leave this incident untouched and who to inform. This will have the following

effects:

 These Service Maintenance Aspects give orientation for the administrators

what to do which results in intrinsic continuous improvement.

 Your customer knows what your people will

do in case the baby should break. If you

follow up with phone calls on this impression

you’re in a good position to build up trust.

Trust does not increase availability figures.

But it increases perceived warranty by a ton,

which can lead to customer satisfaction even

in times where quality is not a killer feature

anymore.

 If your customers or users are the open public there has never been any

other way than doing it like this until you are stable enough to measure

customer satisfaction via marketing research. Even if you recruit

responsible representatives within your company they will only be stubs.

Administrators will be motivated to bring the service

back online as fast as possible anyway if something

should go wrong, especially if its maturity is low.

Saving the mess provides them with a feeling of

being relevant. But be warned: This only works if

administrators and software developers for the

respective services join themselves for a couple of

beers on a regular basis so they know and respect the capabilities of each other

and know they’re both “the good guys”. Providing the beer will help facilitate the

experience.

No! This stinks!

I respect that.

Some of them want to use this ...

...

Some of them are stricken with fear of strain ...

Yes, but this will not work for us!

Yes, but our management will not tolerate that!

Yes, but our business does work differently!

Yes, but we cannot change things like this!

Some of them want to evite this ...

Yes, but we cannot afford the time to!

Yes, but our daily business requires different procedures!

Yes, but we will not manage to do that!

Yes, but we cannot pay for this!

Some of them are structuring huge excuses ...

Yes, but that does look like one huge patchwork!

Yes, but we do need a well structured approach!

Yes, but we've been dealing with chaos long enough!

Yes, but we need to advance and become a big player!

Some of them fear of losses ...

Yes, but that is below our requirements!

Yes, but we are moving towards a completely different direction!

Yes, but our orders differ!

Yes, but we need complete control over our systems!

Yes, but our business is way more complex!

Some of them are dreading the winds of change ...

Yes, but you do things like best practice.

Yes, but we already do some sort of ITIL.

Yes, but we really already do things agile.

Yes, but we use agile methods implicitly.

Yes, but this is nothing new.

Yes, but we were doing this all the time.

Some of them are fearing their future ...

Yes, but if ...

Yes, but when …

Yes, but there could be …

Yes, but chances are that …

So what?!

They thought it was cool

Here's what a couple of others said. Some about my thoughts, some about my

work in general. However, most of it in German ...

"One of the best people leaders I know."

Kris Köhntopp — IT Expert, Database Architect,

booking.com

"Bei Dana Stoll mischen sich umfassende theoretische

Kompetenz mit erheblicher Praxiserfahrung und seltener

Selbstreflexion. Das Ergebnis ist mindestens inspirierend —

und eröffnet in der Regel neue Wege der Problemlösung."

Dirk Fox — Geschäftsführer, Secorvo Security Consulting

GmbH

"I've been impressed by Dana, she has been highly

energetic to our company. I am convinced that bringing

her method to IT service managment will guarantee the

service we dearly need for agile software development

already today."

Boris Gloger — Scrum Expert & First Certified Scrum

Trainer in Europe

"Die einzige IT-Expertin, die ich kenne, die Menschen führen

und Kopfschmerzen beseitigen kann."

Nikolaus Zirwes — CTO, Family One. Ex-Entwicklungsleiter,

WEB.DE.

http://kris.koehntopp.de/
http://secorvo.de/
http://glogerconsulting.de/
https://www.xing.com/profile/Nikolaus_Zirwes

"Vor meinem ersten 2tägigen Training hatte ich zwei

Probleme: komplett neue Trainingsunterlagen - und

einen Ansatz, wie ich dabei meine eigene Wirkung

optimal einsetzen kann. Dana hat es tatsächlich durch

ihre Betreuung während (!) eines Trainings geschafft,

dass ich mir die "Ähs" abgewöhne und meine Stärken

ausnutze. Mein Training wurde so zu einem vollen

Erfolg."

Andreas Schliep — Scrum Trainer & Team Coach für

Software-Entwicklung

"Seit 1/2000 bis zum Ausscheiden im Jahre 2008 haben Frau

Stoll und ich in vielen Projekten gut zusammengearbeitet.

Frau Stoll verfügt, neben Fachkenntnissen in der vollen

Breite moderner IT-Technologien, über die außerordentliche

Fähigkeit, sich schnell und lautlos in komplexe Sachverhalte

einzuarbeiten und permanent auf hohem Niveau Output zu

produzieren. In besonderem Maße kam diese Kompetenz mir

und dem Unternehmen beim Verkauf mit nachfolgender Ausgliederung des

WEB.DE Portals mit fast 500 Mitarbeitern zu gute."

Matthias Hornberger — CFO, Kizoo AG (vormals WEB.DE AG)

"Dana Stoll ist mir seit fast 10 Jahren bekannt. Ich habe

Frau Stoll als sehr überlegten, redlichen Menschen kennen

gelernt, der mit ironischer Gelassenheit die Dinge intelligent,

also konzentriert, Wesentliches von Unwesentlichem

unterscheidend und Regelmäßigkeiten erkennend, anpackt."

Ulf D. Posé — Präsident des Ethikverbandes der dt.

Wirtschaft e.V. & freier Management-Trainer

http://andreas-schliep.de/
https://www.xing.com/profile/Matthias_Hornberger
http://posetraining.de/

